Lambert's Algorithm for $a = \sqrt[n]{c}, c > 0.$

(J. H. Lambert, Beiträge zum Gebrauche der Mathematik und deren Anwendungen, Zweyter Theil, Erster Abschnitt, 1770, p. 152.)

Start with x > 0. Iterate

$$x \leftarrow g(x) := x \frac{(n+1)c + (n-1)x^n}{(n-1)c + (n+1)x^n}$$

Therefore <u>all iterates</u> are positive. More precisely,

$$x_{k+1} = g(x_k), \quad k = 0, 1, 2, \dots,$$

with $x_0 = a$, initial guess. In practice, on a binary machine (most are), we can scale so that $1 \le 2c \le 2^n$. Then $x_0 = 1$ is a pretty good initial guess. Rearrange a bit:

$$g(x) - x = x \left(\frac{(n+1)c + (n-1)x^n}{(n-1)c + (n+1)x^n} - 1 \right)$$
$$= 2x \frac{c - x^n}{(n-1)c + (n+1)x^n}$$

Thus

But we'll show a lot more. Again,

$$g(x) - a = x - a + 2x \frac{c - x^n}{(n-1)c + (n+1)x^n}.$$

To greatly simplify matters we make the change of variables: $z = \frac{x}{a}$, x = az. Then $x = a \Leftrightarrow z = 1$ and

$$\frac{g(az)}{a} - 1 = z - 1 - 2z \frac{z^n - 1}{(n-1) + (n+1)z^n}.$$

But

$$z^{n} - 1 = (z - 1)(1 + z + z^{2} + \dots + z^{n-1})$$

SO

$$\frac{g(az)}{a} - 1 = (z - 1) \left(1 - 2z \frac{1 + z + z^2 + \dots + z^{n-1}}{(n-1) + (n+1)z^n} \right)$$

$$= (z - 1) \frac{(n-1) - 2z - 2z^2 - \dots - 2z^{n-1} - 2z^n + (n+1)z^n}{(n-1) + (n+1)z^n}$$

$$= (z - 1) \frac{(n-1) - 2z - 2z^2 - \dots - 2z^{n-1} + (n-1)z^n}{(n-1) + (n+1)z^n}$$

$$=: (z - 1) \frac{p_0(z)}{q(z)}.$$

We have

$$p_0(1) = (n-1) - 2(n-1) + (n-1) = 0$$

so z-1 divides $p_0(z)$. Let

$$p_1(z) := \frac{p_0(z)}{z-1} =: a_0 + a_1 z + \dots + a_{n-1} z^{n-1}.$$

Then

$$(-1+z)/p_1(z) = (-1+z)(a_0 + a_1z + \dots + a_{n-1}z^{n-1})$$

$$= -a_0 - a_1z - a_2z^2 - \dots - a_{n-1}z^{n-1}$$

$$+a_0z + a_1z^2 + \dots + a_{n-2}z^{n-1} + a_{n-1}z^n$$

$$= -a_0 + (a_0 - a_1)z + (a_1 - a_2)z^2 + \dots + (a_{n-2} - a_{n-1})z^{n-1} + a_{n-1}z^n$$

$$= (n-1) - 2z - 2z^2 - \dots - 2z^{n-1} + (n-1)z^n = p_0(z).$$

Now, two polynomials are equal if and only if their coefficients are equal.

Check this out. Hence

So

$$p_1(z) = \sum_{k=1}^{n-1} a_k z^k$$

$$= \sum_{k=0}^{n-1} (-(n-1) + 2k) z^k$$

$$= -(n-1) \sum_{k=0}^{n-1} z^k + 2 \sum_{k=1}^{n-1} k z^k$$

and

$$p_1(1) = -(n-1)\sum_{k=0}^{n-1} 1 + 2\sum_{k=1}^{n-1} k$$
$$= -(n-1)n + 2\frac{n(n-1)}{2} = 0,$$

showing that z-1 divides $p_1(z)$. Let

$$p(z) := \frac{p_1(z)}{z-1} =: b_0 + b_1 z + \dots + b_{n-2} z^{n-2}.$$

Then

$$(-1+z)(b_0 + b_1z + b_2z^2 + \dots + b_{n-2}z^{n-2})$$

$$= -b_0 - b_1z - b_2z^2 - \dots - b_{n-3}z^{n-3} - b_{n-2}z^{n-2}$$

$$+b_0z + b_1z^2 + \dots + b_{n-4}z^{n-4} + b_{n-3}z^{n-3} + b_{n-2}z^{n-1}$$

$$= p_1(z).$$

Hence

$$b_{k-1} - b_k = a_k, \quad k = 0, 1, \dots, n-1,$$

in which

$$b_{-1} := b_{n-1} := 0.$$

So

$$b_k = b_{k-1} - a_k, \quad k = 0, 1, \dots, n-2,$$

and, as a check, we should have

$$b_{n-2} = a_{n-1} = n - 1.$$

Sum to get

$$b_0 = -a_0 \text{ since } b_{-1} = 0$$

$$b_1 = b_0 - a_1 = -a_0 - a_1$$

$$b_2 = b_1 - a_2 = -a_0 - a_1 - a_2$$

$$\vdots$$

$$b_k = -\sum_{j=0}^k a_j$$

$$= -\sum_{j=0}^k (-n+2j+1)$$

$$= \sum_{j=0}^k (n-1-2j)$$

$$= (n-1)\sum_{j=0}^k 1 - 2\sum_{j=0}^k j$$

$$= (n-1)(k+1) - 2\frac{k(k+1)}{2}$$

$$= (n-1)(k+1) - k(k+1)$$

$$= (n-k-1)(k+1).$$

In particular

$$b_{n-2} = (n-n+2-1)(n-2+1)$$

= $n-1$.

Summary:

$$p_0(z) = (z-1)p_1(z) = (z-1)^2p(z)$$

with

$$p(z) = \sum_{k=0}^{n-2} (k+1)(n-k-1)z^k$$

and all coefficients are positive. In particular,

$$p(1) = n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n-1} k^2$$

$$= n \frac{(n-1)n}{2} - \frac{(n-1)\left(n - \frac{1}{2}\right)n}{3}$$

$$= \frac{1}{6}(n-1)n(n+1) = \frac{n(n^2 - 1)}{6}$$

also

$$q(1) = (n-1) + (n+1) = 2n,$$

so

$$\frac{p(1)}{q(1)} = \frac{n^2 - 1}{12} > 0,$$
 for $n > 1$.

Transforming back to x we get

$$g(x) - a = \frac{(x-a)^3}{a^2} \frac{p\left(\frac{x}{a}\right)}{q\left(\frac{x}{a}\right)},$$

that is

$$x_{k+1} = a + \frac{(x_k - a)^3}{a^2} \underbrace{\frac{p\left(\frac{x_k}{a}\right)}{q\left(\frac{x_k}{a}\right)}}_{>0}$$

so

$$x_k > a \implies x_{k+1} > a$$

and

$$x_k < a \Rightarrow x_{k+1} < a$$
.

All together

$$0 < x_0 < a \Rightarrow x_0 < x_1 < \dots < x_n \nearrow x^*$$
$$x_0 > a \Rightarrow x_0 > x_1 < \dots > x_n \setminus x^*.$$

And, by passing to the limit in the iteration equation, because g(x) is continuous for x > 0,

$$x^* = g(x^*) = x^* \frac{(n+1)c + (n-1)(x^*)^n}{(n-1)c + (n+1)(x^*)^n}.$$

But $x^* > 0$ so it can be cancelled to get

$$(n-1)c + (n+1)(x^*)^n = (n+1)c + (n-1)(x^*)^n,$$

that is

$$2(x^*)^n = 2c$$

or

$$(x^*)^n = c.$$

Since $x^* > 0$, c > 0, x^* must be the unique positive n^{th} root of $c: x^* = a = \sqrt[n]{c}$. Convergence is cubic since

$$\frac{x_{k+1} - a}{(x_k - a)^3} \to \frac{1}{a^2} \frac{p(1)}{q(1)} = \frac{n^2 - 1}{12a^2}, \quad \text{as } k \to +\infty.$$

Lambert's algorithm is Newton's method for

$$f(x) = x^{\frac{n+1}{2}} - \frac{c}{x^{\frac{n-1}{2}}}$$

This was confusing at first, for n=2. We're trying to compute \sqrt{c} but f involves square roots! Never worry, we have

$$f(x) = \frac{x^n - c}{x^{\frac{n-1}{2}}},$$

$$f'(x) = \frac{n+1}{2}x^{\frac{n-1}{2}} + \frac{n-1}{2}\frac{c}{x^{\frac{n+1}{2}}}$$

$$= \frac{1}{2}\frac{(n+1)x^n + (n-1)c}{x^{\frac{n+1}{2}}}$$

$$\frac{f'(x)}{f(x)} = \frac{1}{2}\frac{(n+1)x^n + (n-1)c}{x^{\frac{n+1}{2}}}\frac{x^{\frac{n-1}{2}}}{x^n - c}$$

$$= \frac{1}{2}\frac{(n-1)c + (n+1)x^n}{x(x^n - c)},$$

a rational function! In trying to find <u>all</u> functions so the last equation holds we observe that

$$\frac{f'(x)}{f(x)} = \frac{d}{dx} \ln f(x)$$

(when f(x) > 0). Hence

$$\ln f(x) = \frac{1}{2} \int \frac{(n-1)c + (n+1)x^n}{x(x^n - c)} dx$$

and we are naturally led to the integral

$$\int \frac{dz}{z(z^n-1)}.$$

That seemed tedious, but not uninteresting, to do via partial fractions. But in fact, by the above stuff, it's

$$\int \frac{dz}{z(z^{n}-1)} = \frac{1}{n} \ln \left| 1 - \frac{1}{z^{n}} \right| + k,$$

as can be seen by differentiating both sides (consider cases $z^n > 1$ and $z^n < 1$).

Lambert's algorithm is Halley's algorithm of 1694 applied to $f(x) = x^n - c$.